ХАРАКТЕРИСТИКИ ПРОПУСКАНИЯ РУБИДИЕВОГО АТОМНОГО ОПТИЧЕСКОГО ФИЛЬТРА НА ДЛИНЕ ВОЛНЫ 780 нм, ИСПОЛЬЗУЮЩЕГО РАМАНОВСКОЕ УСИЛЕНИЕ

TRANSMISSION CHARACTERISTICS OF A RAMAN-AMPLIFIED ATOMIC OPTICAL FILTER IN RUBIDIUM AT 780 nm

© 2014 г. Wenjin Zhang, Yufeng Peng

College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, China
E-mail: yufengp@sohu.com

The transmission characteristics of a Raman-amplified atomic filter that can be used to detect fairly weak signals in free-space quantum-key distribution or laser communications are analyzed and discussed in the coherent and incoherent pump fields respectively. The theoretical model for the calculation of the transmission characteristics of a ground-state Raman-amplified Faraday dispersion atomic optical filter based on Raman gain and Faraday rotation is presented. The results show that the filter in a coherent pump field can achieve higher transmission and larger tunability than that in an incoherent pump field due to elimination of pumping detuning. In addition, the filter has a large scale tunability over 3.5 GHz via the Faraday transmission peak adjusted while its bandwidth is only 66 MHz, which is useful for free-space laser communication and lidar systems.

Keywords: atomic optical filter, Raman light amplification, Rubidium, Faraday dispersion, hyperfine structures.

OCIS codes: 120.2440

Submitted 17.10.2013

Introduction

The Faraday anomalous dispersion optical filter (FADOF), which is based on the anomalous dispersion of Faraday rotation near the resonance lines of certain atomic vapours in a longitudinal magnetic field, have many advantages such as high transmission, narrow bandwidth, excellent out-of-band rejection and wide field of view (±π/2) [1–3]. It can be operated either at the line center [4–6] or in the wings [7–9] of the atomic resonance line subjected to given magnetic fields. Therefore, it has been used as a very efficient spectral-filtering device in many signal-detection systems [10–13], recently in the free-space quantum key distribution (QKD) system [14, 15], which could extract very weak signals from strong background noise and operate well in daytime and at night due to adopting the Faraday dispersive atomic filters.

A Faraday dispersive atomic filter was first described and demonstrated by Ohman (1956) [16]. The theoretical framework of a FADOF considered fine structures of atomic system was established by Yeh (1982) [1]. Yin and Shay (1991) [2] (Harrell et al., 2009 [17]) developed the theoretical framework of the FADOF based on the hyperfine structures of atomic system and ground-state transitions in the weak (any) magnetic field by using a quantum-mechanical treatment of the resonant Faraday effect. The transmission characteristics of several alkali atomic FADOFs have been observed and discussed by Menders et al. (1991, Cs D2 line) [3], Peng et al. (1993, Rb D2 line) [18], Hu et al. (1998, Na D lines) [5], Zhang et al. (2001, K D lines) [6], and Zieilińska et al. (2012, Rb D1 line) [19], etc. Though those filters achieved good performance, e.g., above 70% transmission (Zhang et al., 2001 [6]), and approximately 1 GHz ultra-narrow bandwidth (Zieilińska et al., 2012 [19]), they couldn’t have signal gain or amplification ability for the weak light. As for the weak light amplification, since the early 1990s, the mechanisms, which is based on the Raman gain attributed to stimulated Raman scattering and/or the gain from the dressed state in version, have been extensively studied (Imamoglu et al., 1991 [20], Zibrov et al., 1995, [21], Zhu et al., 1996 [22], Zhu, 1997 [23], Wanare, 2002 [24], Kang et al., 2003 [25], Kilin et al., 2008 [26], etc.).

In 2008, Shan et al. [27] demonstrated experimentally an ultranarrow-bandwidth Raman-amplified atomic filter (RAAF) that was
a composite of a Raman light amplifier (RLA) and a dispersive atomic optical filter (i.e. FADOF), which achieved a weak light amplification of about 55 times, a bandwidth of ~60 MHz, and frequency tunability of ~1 GHz in an incoherent pump field. Compared with a conventional FADOF, the RAAF could be more suitable for operating in the free-space QKD or laser-communication systems; however, the detailed theoretical model and the analyses of transmission characteristics for this category of filter in the coherent (incoherent) pump field have not been reported.

In this paper, taking into account Raman gain mechanism in the Doppler-broadened atomic system, the theoretical model for the transmission characteristics of a Raman-amplified Faraday dispersion atomic filter is presented by basing on Raman gain involving the coupling field and pump field and Faraday rotation in the magnetic field. The gain properties, transmission and passband width of the filter subjected to the coherent and incoherent pump fields are analyzed and discussed respectively. We obtain not only the filter frequency tunability of over 3.5 GHz, which is important for free-space optical communication and lidar systems subjected to large Doppler shift. In addition, the other characteristics such as the transmission, gain, and bandwidth of the filter under the action of the coherent and incoherent pump fields are discussed.

1. Theory

The schematic diagram of the RAAF apparatus is shown in Fig. 1a. The coupling, probe (i.e. signal) and pump lasers are emitted from three different lasers, respectively. The coupling laser and probe laser have linear orthogonal polarizations and propagate in the same direction, opposite to that of the pump laser. After the three laser beams enter into the cell 1, the signal gain occurs under the combined action of coupling laser and pump laser; the probe field is amplified. The amplified probe light passes through the P4 and P5 to the Faraday cell 2, while the coupling light is distinguish by the P4. Due to the Faraday rotation effect in an axial magnetic field, the amplified signal light which frequency lies only in the transmission passband of the dispersive atomic filter, can experience a 90° rotation of the polarization and emerge apparently low absorption and high transmission.

The three-level Λ-type system for Rubidium atoms with the laser-coupled D2 transitions is depicted in Fig. 2. Rubidium has only one stable isotope, 85Rb, with the isotope 87Rb, which comprises almost 28% of naturally occurring Rubidium (72.17% 85Rb and 27.83% 87Rb). The levels [1], [2] and [3] represent the ground states [5S_{1/2}, F = 2], [5S_{1/2}, F = 3] and the excited state 5P_{3/2} of 85Rb atom, and like wise, the ground

![Fig 1. Schematic diagram of the RAAF apparatus (a). P1–4 stand for polarizing beam splitters (PBS), M for a mirror, P5–6 for Glan–Thompson prism polarizers, HW for a half-wave plate, A for an attenuator, and D for a photodiode detector. Schematic of the rotation of the signal-light plane of polarization (b).](image)

![Fig 2. 85Rb far-detuned three-level Λ system. Δ_{1}(λ) is the coupling (probe) detuning. For 87Rb atoms, the ground hyperfine states are 5S_{1/2}, F = 2 and 5S_{1/2}, F = 1, and the excited hyperfine states are 5P_{3/2}, F = 3, 2, 1, 0.](image)
states \(|5S_{1/2}, F = 1\rangle\), \(|5S_{1/2}, F = 2\rangle\) and the exited state \(5P_{3/2}\) for \(^{87}\text{Rb}\) atom, respectively. A coupling laser is used to connect the ground state \(5S_{1/2}\) \((F = 2\) for \(^{85}\text{Rb}\) or \(F = 1\) for \(^{87}\text{Rb}\)) \(\leftrightarrow\) the excited state \(5P_{3/2}\) transition, and a probe laser couples the \(5P_{3/2} \leftrightarrow 5S_{1/2}\) \((F = 3\) for \(^{85}\text{Rb}\) or \(F = 2\) for \(^{87}\text{Rb}\)) transition. A pump laser with a rate \(\Gamma\) is applied to the Rb \(5S_{1/2}\) \((F = 3\) for \(^{85}\text{Rb}\) or \(F = 2\) for \(^{87}\text{Rb}\)) \(\leftrightarrow 5P_{3/2}\) transition and excites the atoms to the Rb \(5P_{3/2}\) excited state.

According to above three-level system, and the electric-dipole and the rotating-wave approximations, the Hamiltonian in the interaction picture can be expressed as

\[
H_1 = -\frac{\hbar}{2} \begin{pmatrix}
0 & 0 & \Omega \\
0 & -2(\Delta_1 - \Delta) & g \\
\Omega & g & -2\Delta_1
\end{pmatrix}.
\]

(1)

Here \(\Delta_1\) is the detuning of the coupling beam from the atomic transition \(\omega_{31}\) and \(\Delta\) is the detuning of the probe field from the atomic transition \(\omega_{32}\); \(\Omega = \mu_{32}E_2 / \hbar\) and \(g = \mu_{32}E_2 / \hbar\) are the Rabi frequencies of the coupling laser (with amplitude \(E_1\)) and probe laser (with amplitude \(E_2\)); and \(\mu_{31}\) and \(\mu_{32}\) are the relevant dipole moments. For convenience’s sake, the Rabi frequencies are taken as real parameters, and the quantum dynamics of the three-level atomic system can be described by the Liouville equation

\[
\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [H_1, \rho] - \frac{1}{2} \{\gamma, \rho\}.
\]

(2)

The full statements of Equation (2) are expressed as follows:

\[
\rho_{11} = \gamma_{31}\rho_{33} + i\Omega(\rho_{31} - \rho_{13})/2,
\]

\[
\rho_{22} = -\Gamma\rho_{22} + (\Gamma + \gamma_{32})\rho_{33} + ig(\rho_{32} - \rho_{23})/2,
\]

\[
\rho_{33} = \Gamma\rho_{22} - (\Gamma + \gamma_{32} + \gamma_{31})\rho_{33} + i\Omega(\rho_{13} - \rho_{31})/2 + ig(\rho_{23} - \rho_{32})/2,
\]

\[
\rho_{12} = -[\Gamma/2 - i(\Delta_1 - \Delta)]\rho_{12} - ig\rho_{13}/2 + i\Omega\rho_{32}/2,
\]

\[
\rho_{13} = -[\Gamma/2 + \gamma_{32}/2 + \gamma_{31}/2 - i\Delta_1]\rho_{13} - -ig\rho_{13}/2 + i\Omega(\rho_{33} - \rho_{11})/2,
\]

\[
\rho_{23} = -[\Gamma + \gamma_{32}/2 + \gamma_{31}/2 - i\Delta_1]\rho_{23} - -ig\rho_{21}/2 + ig(\rho_{33} - \rho_{22})/2,
\]

\[
\rho_{11} + \rho_{22} + \rho_{33} = 1.
\]

(3)

Here \(\gamma_{ij} (i, j = 1 - 3)\) are the radiative decay rates from state \(|i\rangle\) to state \(|j\rangle\). Since the atomic filter is used to detect a weak optical signal, we neglect the second order in \(g\) and solve Equation (3) in the steady state to get

\[
\rho_{32} = \frac{i\Omega(\rho_{32} - \rho_{33})(\Gamma + \gamma_{31} + \gamma_{32} - 2i(\Delta_1))}{(\Gamma + \gamma_{31} + \gamma_{32} - 2i(\Delta_1)) \\
\times \left\{ 2\Gamma + \gamma_{31} + \gamma_{32} + 2i(\Delta_1 - \Delta) + \frac{1}{2} \right\},
\]

(4)

\[
\rho_{11} = \frac{\Omega^2(\Gamma + \gamma_{31} + \gamma_{32})}{\Omega^2(\Gamma + \gamma_{31} + \gamma_{32})(3\Gamma + \gamma_{32}) + \\
\times (\Gamma + \gamma_{32}) + \\
\times \Gamma + \gamma_{31} + \gamma_{32})^2}
\]

(5)

\[
\rho_{22} = \frac{\Omega^2(\Gamma + \gamma_{31} + \gamma_{32})}{\Omega^2(\Gamma + \gamma_{31} + \gamma_{32})(3\Gamma + \gamma_{32}) + \\
\times (\Gamma + \gamma_{32}) + \\
\times \Gamma + \gamma_{31} + \gamma_{32})^2}
\]

(6)

\[
\rho_{33} = \frac{\Omega^2\Gamma}{\Omega^2(\Gamma + \gamma_{31} + \gamma_{32})(3\Gamma + \gamma_{32}) + \\
\times (\Gamma + \gamma_{32}) + \\
\times \Gamma + \gamma_{31} + \gamma_{32})^2}
\]

(7)

Considering the atoms interacting with the optical field, the complex susceptibility \(\chi_{\pm}\) at the probe field frequency can be obtained from the polarization

\[
\bar{\rho}_{\pm}(z, t) = \frac{1}{2} - \epsilon_0 \epsilon_\pm E_\pm(z, t) \bar{E} \exp[i(kz - \omega t)] + c.c. = \\
= N_0 \left(\mu_{\pm} \bar{\rho}_{\pm}^{\bar{E}_\pm} + c.c. \right).
\]

(8)

Consequently, the atomic susceptibility \(\chi_{j+}\) of the \(j\)th \(\sigma^+\) probe transition in the cell 1 can be written as

\[
\chi_{j+} = \frac{\mu_{j+}^2 N_0}{\hbar\epsilon_0 \bar{E}_\pm},
\]

(9)

where \(\pm\) denotes the left(right)-hand circular component, \(\hbar\) is the Plank’s constant divided by \(2\pi\), \(\epsilon_0\) is the permittivity of free space, \(\mu_{j+}\) are the relevant dipole moments, and \(N_0\) (with unit atom/cm\(^3\)) is the total atomic number density, given by [28]

\[
\ln(N_0) = -4529.6/T - 3.9911\ln T + \\
+ 0.00059T + 34.8325.
\]

(10)
We consider the coupling laser and probe laser passing through a Doppler-broadened atomic cell 1 in the same direction. An atom moving towards the probe beam (with frequency \(\nu_p\)) with velocity \(v\) is affected by the probe frequency detuning upshifted to \((\Delta + \nu_p)c/c\) and the frequency detuning of the coupling beam (with frequency \(\nu_c\)) upshifted to \(\Delta_1 + \nu_c/c\). Considering that atoms are in classical thermal equilibrium with the one-dimensional Maxwellian velocity distribution of \(N(v)dv = N_0e^{-v^2/2u^2}dv\) \((u)\) is the most probable velocity and is defined as \(u = (2kB/T)^{1/2}\), the final value of \(\chi_{\pm}\) is obtained by integrating over the atomic velocity \(v\) and summing over all the components of Equation (9)

\[
\chi_{\pm} = \frac{2N_0}{\sqrt{n_0\pi\hbar^2}} \sum_j \frac{\mu_j^2}{g_\pm} \int_{-\infty}^{\infty} \rho_{32}^2 e^{-v^2/2u^2} dv. \tag{11}
\]

1.1. RAAF gain

We assume that an \(x\)-direction linearly polarized probe beam enters the atomic gas cell 1 of length \(L_1\) (Fig. 1b) at \(z_1 = 0\) and travels along the positive \(z\)-direction. The electric radiation field of the probe beam can be expressed in terms of its right- and left-circularly polarized component as

\[
\hat{E}(z) = \frac{E_0}{2} \left[\exp(ik_+z) + \exp(ik_-z) \right] \hat{x} + \\
+ i \left[\exp(ik_+z) - \exp(ik_-z) \right] \hat{y} \exp(-i\omega t), \tag{11}
\]

where \(k_\pm\) are the circular wave-number components, given by

\[
k_\pm = \frac{\alpha}{c} n_\pm + \frac{i}{2} \alpha_\pm. \tag{12}
\]

By virtue of Equation (11), at \(z_1 = 0\) and \(L_1\), the \(x\) components of this probe beam may be written as

\[
\hat{E}_{lx}(0) = E_0 \hat{x} \exp(-i\omega t), \tag{13}
\]

\[
\hat{E}_{lx}(L_1) = \\
= \frac{E_0}{2} \left[\exp(ik_-L_1) + \exp(ik_+L_1) \right] \hat{x} \exp(-i\omega t), \tag{14}
\]

respectively. The transmission coefficient of the RLA, defined by \(Tr_{RLA} = I_{1,1}(L_1)/I_{1,1}(0)\), is then given by

\[
Tr_{RLA} = \frac{|E_{lx}(L_1)|^2}{|E_{lx}(0)|^2} = \exp(-\frac{\alpha_+ + \alpha_-}{2}L_1) = \exp(\bar{G}L_1), \tag{15}
\]

where \(\bar{G}\) is the mean gain coefficient of the RAAF. It can be written as

\[
\bar{G} = -\frac{\alpha_+ + \alpha_-}{2} = -\frac{\alpha_p}{2c} \text{Im}(\chi_+ + \chi_-). \tag{16}
\]

where \(c\) is the speed of light in free space.

1.2. RAAF transmission

When the amplified probe beam goes through the cell 1, polarizing beam splitter P4 and Glan-Thompson prism polarizer P5 to the Faraday cell 2, the \(x\) component of the polarized wave at \(z_2 = 0\) is

\[
\hat{E}_{2x}(0) = \hat{E}_{lx}(L_1). \tag{17}
\]

Owing to Faraday magneto-optical effect, the plane of polarization will rotate when the probe beam propagates through the cell 2 of length \(L_2\). By virtue of Equations (11), (14) and (17), at \(z_2 = L_2\), the transmitted wave which is parallel to the \(y\)-direction can be written as

\[
\hat{E}_{2y}(L_2) = i\frac{E_0}{4} \left[\exp(ik_+L_1) + \exp(ik_-L_1) \right] \times \\
\left[\exp(ik'_+L_2) - \exp(ik'_-L_2) \right] \hat{y} \exp(-i\omega t). \tag{18}
\]

The transmission \(Tr\) of the RAAF \((z_1 = 0 \rightarrow z_2 = L_2)\), defined by \(Tr = I_{2y}(L_2)/I_{2y}(0)\), is then given by

\[
Tr = \frac{|E_{2y}(L_2)|^2}{|E_{2y}(0)|^2} = \\
= \frac{1}{2} \exp(\bar{G}L_1 - \bar{G}L_2) \left[\cosh(\Delta_\alpha L_2) - \cos(2\alpha L_2) \right]. \tag{19}
\]

Here \(\bar{\alpha}\), \(\Delta_\alpha\) and \(\rho\) are the mean absorption coefficient, circular dichroism, and rotatory power, respectively. They can be written as

\[
\bar{\alpha} = \frac{\alpha_+ + \alpha_-}{2} = -\frac{\alpha_p}{2c} \text{Im}(\chi'_+ + \chi'_-), \tag{19}
\]

\[
\Delta_\alpha = \frac{\alpha_+ - \alpha_-}{2} = \frac{\alpha_p}{2c} \text{Im}(\chi'_+ - \chi'_-), \tag{20}
\]

\[
\rho = \frac{\alpha_p}{2c} (n'_+ - n'_-) = \frac{\alpha_p}{4c} \text{Re}(\chi'_+ - \chi'_-). \tag{21}
\]

Here \(\chi'_\pm\) are the dielectric susceptibilities seen by the left and right circularly polarized components of the probe light in the magnetic field. It can be given by our previous work [28]

\[
\chi'_\pm = \frac{i}{2} \frac{3\sqrt{\bar{G}^2}}{8\pi \sqrt{\hbar mc_\theta}} V_2 \times \\
\sum_{n,j} N_{nj} f C_F C_3 j C_6 W(\delta \nu_n \pm \delta \nu_{nsj} + \omega). \tag{22}
\]

“Оптический журнал”, 81, 4, 2014
The atomic absorption spectrum in cell 1 and a typical transmission spectrum of the dispersive atomic filter without coupling light at room temperature (293 K) (a). This spectrum is used to calibrate the transmission spectrum of the filters. The absorption peaks 1, 2, 3, and 4 correspond to the 87Rb $|5S_{1/2}, F = 2\rangle \rightarrow |5P_{3/2}, F = 3\rangle$, 85Rb $|5S_{1/2}, F = 3\rangle \rightarrow |5P_{3/2}, F = 2\rangle$, and 85Rb $|5S_{1/2}, F = 1\rangle \rightarrow |5P_{3/2}\rangle$ transitions, respectively. The position of absorption peak 2 is set to zero detuning point. The transmission spectrum of the dispersive atomic filter without the coupling light (b). $T_{1} = 376 K$, $T_{2} = 372 K$, $L_{1} = 0.1 m$, $L_{2} = 0.04 m$ and $B = 0.0205 T$.

Results and discussion

It is assumed that the coupling light power $P_{\text{coupling}} (P_{\text{coupling}} \approx (E_{l})^{2})$ is 236 mW, and the detuned value Δ_{1} of its central frequency is 4 GHz red detuned from the transition $|1\rangle = |5S_{1/2}, F = 2\rangle \rightarrow |3\rangle = |5P_{3/2}, F = 3\rangle$ of 85Rb D_{2} line. The coupling light also acts as the pumping laser which is ~ 1 GHz detuned from the $|5S_{1/2}, F = 3\rangle \rightarrow |5P_{3/2}, F = 3\rangle$ pump transition of 85Rb atom. The beam diameter d_{coupling} of the coupling light is 1.5 x 10^{-3} m. The gain cell length L_{1} is 0.1 m and its temperature $T_{1} = 376 K$. The Faraday cell length L_{2} is 0.04 m and its temperature $T_{2} = 372 K$. The axial magnetic strength B in the Faraday cell is 0.0205 T. According to Equation (19), the peak transmission of the Raman-amplified atomic filter as a function of probe detuning from a resonance transition for $5S_{1/2}(F = 3) \rightarrow 5P_{3/2}$ of 85Rb in an incoherently pumped field (pump detuning $\Delta_{p} \approx -1$ GHz) is shown in Fig. 3. It can be found that the RAAF displays a single dominant peak with transmission of 18.4 (corresponding to $\Theta = 29$) at 4.0 GHz relative to the absorption peak 1a with FWHM (full width at half maximum) of 66 MHz. The analytical results correspond greatly to the experimental results carried out by Shan [27].

Fig. 4a, b show an atomic absorption spectrum in cell 1 and a typical transmission spectrum.
of the FADOF in cell 2 without coupling light, respectively. The FADOF displays a 1.98 GHz bandwidth (FWHM) at a maximum peak (Tr1) transmittance of 94.6%. It should be noted that the Rb-FADOF possesses a secondary maximum peak Tr2 in the strong magnetic field [9], while it doesn’t emerge in reference [27] mainly because the transmission frequency of peak Tr2 is beyond the scan range of signal-light frequency (≈15 GHz).

Fig. 5a, b represent the gain coefficient, transmission and FWHM of the RAAF in the incoherent pump field [27] as a function of coupling-light power, respectively. It can be seen that with the coupling-light power (P coupling) increasing from 60 to 95 mW, the RAAF can achieve a larger gain, higher transmission and a narrower bandwidth. When P coupling varies from 95 to 500 mW, the filter can obtain an ultra-narrow bandwidth of 66 MHz and the transmission coefficient of over 2.5. It is worth mentioning that the saturation of transmission coefficient appears when P coupling attains to approximately 472 mW, as shown in Fig. 5a, which means that too larger coupling-laser power is unnecessary to get a higher transmission.

The outstanding characteristic of the RAAF is the light amplification by comparison with traditional FADOFs. According to Equations (6) and (7), we can get

$$\frac{\rho_{33}}{\rho_{22}} = \frac{\Gamma}{\Gamma + \gamma_{32}} < 1. \quad (18)$$

It is easily found that the signal gain or amplification in a RAAF does not require population inversion in the relevant atomic states [3] and [2]. It can be induced by the stimulated Raman scattering $|1\rangle \rightarrow |3\rangle \rightarrow |2\rangle$ in which the atoms absorb a coupling-laser photon and then emit a probe-laser photon.

When the pump laser is provided in Fig. 1 and the pump beam is on resonance with $|5P_{1/2}, F = 3\rangle \rightarrow |5P_{3/2}, F = 3\rangle$ transition of 85Rb atom, the transmission and FWHM of the RAAF as a function of the pump rate in the coherent pump field is given in Fig. 6. It can be found that the peak transmission increases with continually increasing of the pump rate. When the coupling-light power is 60 mW, and the pump-laser rate is $4.5\gamma_{32}$ (the corresponding pump-laser power -2.85 mW, $\gamma_{32} \approx 19.06$ MHz), the RAAF displays a peak transmission of 11.2 and an ultra-narrow bandwidth of 66 MHz, and while the equal coupling-light power is supplied in the incoherent pump field, the filter only obtains a peak transmission of 1.36 with the bandwidth of over 1 GHz (Fig. 5a, b) due to the larger pumping detuning ($\approx –1$ GHz) that corresponds to a lower pump rate ($\approx 0.29\gamma_{32}$). To obtain 11.2 transmission in the incoherent pump field, the coupling-light power required is up to 180 mW (Fig. 5a), which is triple of that in the coherent pump field. By comparing transmission characteristics in the coherent with incoherent pump fields, it is easy to find that the filter in a coherent pump field can be more effective to obtain higher peak transmission and narrower bandwidth.

The transmission, FWHM and peak detuning of the RAAF as a function of coupling-light

![Fig. 5. Gain coefficient (1) and transmission (2) (a), gain coefficient (1) and FWHM of the RAAF (2) as a function of the coupling-light power in the incoherent pump field (b). $d_{\text{coupling}} = 1.5 \times 10^{-3}$ m, $\Delta = \Delta_1 = –4.0$ GHz, $\Delta_p = –0.964$ GHz, and other parameters are the same as in Fig. 4b.](image-url)
For the above tuning, the transmission frequency of the RAAF is tuned only near a Faraday transmission peak Tr_1 (at $\Delta = -4.0$ GHz, Fig. 4b), and this gives rise to the limited tunability of the filter.

The realization of the filter’s tunability is also achieved by changing the position of the Faraday transmission peak. It is well known that the transmission peak of FADOF can be tuned through changing the magnetic field strength or Faraday cell temperature. As an example, at 388 K, with a Rubidium cell (0.04 m in length) in an axial magnetic field of 0.0211 T, the transmission spectrum of a FADOF is shown in Fig. 8. It is easy to see from Fig. 4b and 8 that the transmission peak Tr_1 is tuned ~ 2 GHz.

The dependence of transmission, FWHM and peak detuning of the RAAF in a new Faraday transmission peak Tr_1 (Fig. 8) on coupling-light detuning in the incoherent pump field is shown in Fig. 9a, b. In which, the filter shows an effective frequency tunability of ~ 0.6 MHz under 66 MHz bandwidth because of large pump detuning. When a coherent pump field with a rate $\Gamma = 3\gamma_{32}$ is applied, the RAAF’s tunability can reach ~ 1.75 GHz with a bandwidth of 66 MHz, as shown in Fig. 10a, b. It can be seen obviously from Fig. 7, 9 and 10 that the RAAF in the coherent pump field can achieve a larger tunability (~ 3.53 GHz, ~ -3.47 \rightarrow -7 GHz) than that in the incoherent pump field by means of the Faraday transmission peak adjusted.
Fig. 8. Rb FADOF transmission versus signal laser frequency. $T_2 = 388\, \text{K}$, $L_2 = 0.04\, \text{m}$, and $B = 0.0211\, \text{T}$.

Conclusion

In conclusion, we have presented a theoretical model for a ground-state Raman-amplified Faraday dispersion atomic filter based on the Raman light gain and Faraday rotation in Rubidium at 780 nm. By comparing transmission characteristics of the filter in the coherent and incoherent pump fields, we find that the filter in a coherent pump field has a higher peak transmission and a larger tunability than that in an incoherent pump field, which is of great significance for practical applications of the Raman-amplified atomic filter. Moreover, the filter can achieve the peak transmission of over 10, an ultra-narrow
bandwidth of 66 MHz and the tunability of no less than 3.5 GHz in the coherent pump field, which is very helpful for us to improve the detection of weak signals in free-space optical communication, QKD and lidar systems subjected to large Doppler shift. This model, which includes weak light amplification, is expected to be helpful in investigating the performances of Raman-amplified atomic filters for other atomic lines.

The authors would like to acknowledge the support from the National Natural Science Foundation of China (grant 61077037).

* * * * *

REFERENCES

